

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583 **<u>QUESTION BANK (DESCRIPTIVE)</u>**

Subject with Code :OPTIMAL CONTROL THEORY (16EE7510)Course & Branch: CS - EEE Year &Sem: I-M.Tech& II-Sem Regulation: R16

	UNIT-I			
1.	nat are the techniques available for solving constrained and unconstrained problems of			
	optimization? Explain each of them in detail. L1[12M]		
2.	(a) What is an optimization problem? Explain with an example.	L2[6M]		
	(b) What are the constrained problems of optimization? Explain.	L2[6M]		
3.	What is a convex optimization problem? Explain about (i) convex set (ii) convex function. L1[12M]			
4.	(a) What is meant by quadratic problem? Explain	L2[6M]		
	(b) What are the necessary conditions for quadratic programming problem? Explain.	L2[6M]		
5.	Explain the classification of optimization problems with suitable examples.	L1[12M]		
6.	(a) Find the domain for which following functions are convex cosx, sinx function. L2[6M]			
	(b) Minimize $f(x,y)=(x-10)^2$ subject to $g1=x+y-12\leq 0$, $g2=x-8<0$ use KKT conditions	. L2[6M]		
7.	Explain the necessary conditions of optimality for a general constrained problem.	L1[12M]		
8.	Check the convexity of a problem: Minimize $f(x_1, x_2)=2x_1+3x_2-x_1^3-2x_2^2$ subject to x_1	$+3x_{2}\leq6,$		
	$5x_1+2x_2 \le 10, x_1, x_2 \ge 0.$	L1[12M]		
9.	Explain KKT necessary and sufficient conditions for quadratic programming problem	n.L1[12M]		
10				

10. Explain constrained and unconstrained problems and their solutions using different techniques. L1[12M]

UNIT-II

1.	How interior method is useful for convex optimization? Explain.	L1[12M]
2.	What is meant by performance index? Explain in detail different types of perform	nance indices.L1[12M]
3.	Explain in detail primal and dual problems.	L1[12M]
4.	Considering the following problem: Maximize $Z_p=5x_1-2x_2$ subjected to $2x_1+x_2 \le 2x_1-2x_2$	
	$-3x_1+2x_2 \le 3$; $x_1, x_2 \ge 0$ salve the primal & dual problem and study their final table.	L1[12M]
5.	(a) Explain the concept of duality in a linear programming problem.	L2[6M]
	(b) Consider the program: Maximize $3x_1+2x_2+x_3$ Subject to $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ and	
	$x_1-x_2+x_3 \le 4$, $2x_1+x_2+3x_3 \le 6$; $-x_1+2x_3 \le 3$ and $x_1+x_2+x_3 \le 8$ state the dual problem.	L2[6M]
6.	Using simplex method, solve the following optimization problem. Maximize 5x1-	$+2x_2+x_3$
	subject to $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$, $x_1 + 3x_2 - x_3 \le 6$, $x_2 + x_3 \le 4$ and $3x_1 + x_2 \le 7$.	L1[12M]
7.	Consider the following problem in two variables: Minimize $f=-x_1x_2$ subjected to	
	$(x1-3)^2+x_2^2=5$ obtain the solution for dual problem.	L1[12M]
8.	Explain different types of performance indices.	L1[12M]
9.	Derive Euler Lagrange Equation	L1[12M]
10.	. Explain the basic concepts of Multi-Objective optimization problem.	L1[12M]

UNIT-III

- 1. Find an external for the functional:
- 2. $J(x) = \int_{0}^{\frac{\pi}{4}} \left[x_1^2(t) + \dot{x}_1(t) + \dot{x}_2(t) + \dot{x}_2^2(t) \right] dt$ The functions x_1 and x_2 are independent and boundary

conditions are: $x_1(0)=1$; $x_1(\pi/4)=2$; $x_2(0)=3/2$; $x_2(\pi/4)=$ free.L1[12M]

- 3. (a) What are the necessary conditions for optimal control problems? Explain in detail. L1[6M]
 (b) Explain how calculus of variation method can be used to find the stationary values of functions. L1[6M]
- 4. Find the optimal feedback control law for the plant $\dot{x}_1(t) = x_2(t)u(t)$; $\dot{x}_2(t) = x_1(t) x_2(t) + u(t)$ and the cost function $J = \int_0^\infty [2x_1^2(t) + 4x_2^2(t) + 0.5u^2(t)] dt \, L1[12M]$
- 5. A second order system described by $\dot{x}_1(t) = x_2(t)$, $\dot{x}_2(t) = -2x_1(t) 3x_2(t) + 5u(t)$ and cost function is $J = \int_0^\infty (x_1^2(t) + u^2(t)) dt$. Find t optimal control when x(0)=3 and $x_2(0)=2$. L1[12M]
- 6. For the first-order system $\dot{x}(t) = -x(t) + u(t)$, find the optimal control $u^*(t)$ to minimize the following cost function $J = \int_{0}^{t_f} (x^2(t) + u^2(t)) dt$ where t_f is not specified and x(0)=5 and $x(t_f)=0$. Also find t_f . L1[12M]
- 7. (a) Explain the necessary conditions for optimal control.L2[5M](b) State and explain the fundamental theorem of the calculus of variations.L2[5M]

L1[12M]

- 8. Explain in details about linear regulator problem.
- 9. Explain about calculus of variation to optimal control problem. L1[12M]
- 10. Explain the functional involving several independent functions L1[12M]

UNIT-IV

1. Derive continuous time AlgebricRiccati Equation that satisfies linear quadratic optimal			
regulator for LTI systems	L1[12M]		
2. Explain about frequency domain interpretation of linear quadra	atic regulator? L1[12M]		
3. Define and Explain about linear quadratic regulator	L1[12M]		
4. Explain Define about remarks on weighting matricesL1[12M]			
5. Define time optimal control and derive the expression?	L1[12M]		
6. Explain about the simplest variational problems?	L1[12M]		
7. Analize the solution of Riccati equations?	L1[12M]		
8. Derive the expressions for the linear quadratic regulator?	L1[12M]		

9. Derive the expression for linear quadratic regulator? L1[12M]

10.Explain bout interpretation of LQR in frequency domain robust studies L1[12M]

UNIT-V

1. Using frequency domain method, design an optimal controller for the following systems $\dot{x1}(t) = x2(t), \dot{x2}(t) = u(t)$ that minimizes the performance index

J=1/2
$$\int_{0}^{1} (x_1^2(t) + x_2^2(t) + u^{2(t)}) dt.L1[12M]$$

- 2. Explain about Pontrygin's minimum principle?
- Determine the smooth curve of smallest length connecting the point x(0)=1 to the line t=5, It can be shown that length of a curve lying the t-x(t) plane, witht₀=0and t_f=5 L1[12M]

L1[12M]

- 4. Derive the expressions for pontrygin's minimum principle? L1[12M]
- 5. For the first order systems $\dot{x}(t) = -x(t)+u(t)$, find the optimal control $u^*(t)$ to minimize the following cost function $J = \int_{0}^{t} (x^2(t)+u^2(t)) dt$ where t_f is not specified and x(0)=5 and $x(t_f) = 0$ also find $t_{f_L,1,1,2,M}$
- 6. Using the dynamic programming method, minimize the following functional.

$$J = x_1^2(k_f) + 2x_2^2(k_f) + \int_{k=0}^{k_f - 1} \{(0.5 x_1^2(k) + 0.5 x_2^2(k) + 0.5 u^2(k))\} \text{ for the second order systems}$$

X₁ (k+1)= 0.8 x₁ (k) +x₂ (k)+u(k); x₂(k+1)=0.6x₂ (k)+0.5u(k) subjected to the initial

conditions. $X_1(k_0=0) = 5$; $x_2(k_0=0) = 3$; $X(k_f)$ is free ,and $k_f=10$? L1[12M]

7. Using the frequency domain results determine the optimal feedback coefficients and the closed loop optimal control for the MIMO system. $\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$ and the

cost function
$$J = \int_{0}^{\infty} \left[4x_1^2(t) + 4x_2^2(t) + 0.5u_1^2(t) + u_2^2(t) \right] dt$$
 L1[12M]

- 8. Explain in details various steps for the development of solution of the Time-optimal control L1[12M]
- 9. (a) Explain time optimal control problem with an exampleL1[6M](b) Discuss about system and signal normsL1[6M]10. (a) Explain the computational procedure of dynamic programming.L1[6M](b) Explain the statement of problems and its solution.L1[6M]